\qquad

Calculus I

Professor Piotr Hajłasz
Second Exam
November 7, 2014

Problem	Possible points	Score
1	20	
2	30	
3	10	
4	10	
5	20	
6	20	
Total	110	

To get A you only need 100 points, so 10 points is a bonus. In other words, if you miss 10 points on the exam you still get a full score.

Problem 1. (20p) Find the absolute maximum and minimum values of $f(x)=10 x(2-\ln x)$ on the interval $\left[1, e^{2}\right]$.

Problem 2. $(30 \mathrm{p}=10+10+10 \mathrm{p})$ Evaluate the limits
(a)

$$
\lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\sin x}\right)
$$

(b)

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\ln \left(e^{x}-1\right)}
$$

(c)

$$
\lim _{x \rightarrow(\pi / 2)^{+}} e^{\left(\tan x-\frac{1}{\cos x}\right)}
$$

Problem 3. (10p) Find the inverse of $f(x)=e^{x}-e^{-x}$. Hint: At some point replacing e^{x} by z will lead to a quadratic equation in z. Since $z=e^{x}>0$, only one solution will be acceptable.

Problem 4. ($10 \mathrm{p}=5+5 \mathrm{p}$) Using Newton's method for the approximation of the solution to $e^{-x}=x-2$:
(a) Find the general formula for x_{n+1} in terms of x_{n}.
(b) Find x_{2} if $x_{1}=1$. Simplify the answer.

Problem 5. (20p) Find the point on the line $\frac{x}{a}+\frac{y}{b}=1$, that is closest to the origin.

Problem 6. (20p) Sketch the graph of the function $f(x)=x^{4}-4 x^{3}+10$. Make sure that you clearly label: intervals where the function in increasing, decreasing, concave up and concave down, local and absolute maxima/minima and inflection points.

